Contents

Title Updatedsort descending Link to edit content
Data Exploration Visualization and Feature Engineering 2019/09/24 – 10:21
Ensemble_Methods__Random_Forests_and_Boosting 2019/09/25 – 13:43
‘Resume Evaluation Using Text Analytics Algorithms 2019/09/25 – 21:01
Online Experimentation and A/B Testing 2019/09/26 – 11:20
Unsupervised Learning with K-means Clustering 2019/09/26 – 11:35
Regression 2019/09/26 – 12:55
Text Analytics Fundamentals 2019/09/27 – 12:58
Big Data Engineering with Distributed Systems 2019/09/27 – 13:43
Time Series Forecasting 2019/09/28 – 13:43
Real Time Analytics 2019/09/28 – 14:06
Naive Bayes 2019/09/28 – 14:09
Recommender_Systems 2019/09/28 – 14:18
Resume Analyzer with Text Analytics 2019/09/28 – 14:24
Predictive Analytics, Classification, and Decision Trees 2019/09/28 – 14:26
Evaluation Of Classification Models 2019/09/28 – 14:26
Interactive Dashboards with R 2019/10/22 – 16:13
Interactive Dashboards with R 2019/10/24 – 14:29
The Central Limit Theorem (CLT) 2019/10/24 – 15:27
Probability Models and Axioms 2019/10/24 – 15:34
Conditioning and Bayes' Rule 2019/10/24 – 15:36
Slides are appearing in Shrinked form on wordpress 2019/10/25 – 15:50
Independence 2019/10/28 – 19:39
Counting 2019/10/28 – 19:41
Discrete Random Variables Part I 2019/10/28 – 19:43
Discrete Random Variables Part II 2019/10/28 – 19:45
Discrete Random Variables Part III 2019/10/28 – 19:46
Derived Distributions 2019/10/28 – 19:49
Continuous Random Variables Part I 2019/10/28 – 19:51
Continuous Random Variables Part II 2019/10/28 – 19:52
Continuous Random Variables Part III 2019/10/28 – 19:54
Sum of Independent R.V.s. Covariance and Correlation 2019/10/28 – 19:56
Conditional Expectation & Variance Revisited; Sum of a Random Number of Independent R.V.s 2019/10/28 – 19:57
Introduction to Bayesian Inference 2019/10/28 – 19:58
Linear Models With Normal Noise 2019/10/28 – 20:00
Least Mean Squares (LMS) Estimation 2019/10/28 – 20:01
Linear Least Mean Squares (LLMS) Estimation 2019/10/28 – 20:02
Inequalities, Convergence, and the Weak Law of Large Numbers 2019/10/28 – 20:03
The Central Limit Theorem (CLT) 2019/10/28 – 20:06
An Introduction to Classical Statistics 2019/10/28 – 20:07
The Bernoulli Process 2019/10/28 – 20:09
The Poisson Process Part I 2019/10/28 – 20:10
The Poisson Process Part II 2019/10/28 – 20:13
Finite-State Markov Chains 2019/10/28 – 20:14
Steady–State Behavior of Markov Chains 2019/10/28 – 20:15
Absorption Probabilities and Expected Time to Absorption 2019/10/28 – 20:16
Hypothesis Testing 2019/10/29 – 09:49
Introduction to Regression 2019/10/30 – 12:21
Basic Notation and Background 2019/10/30 – 12:25
Linear Least Squares 2019/10/30 – 12:41
Regression to the Mean 2019/10/30 – 12:46
Statistical Linear Regression Models 2019/10/30 – 12:59
Residuals 2019/10/31 – 14:38
Inference in Regression 2019/10/31 – 14:50
Multivariate Regression 2019/10/31 – 15:09
Multivariable Regression Example 2019/10/31 – 16:33
Multivariable Simulation Exercises 2019/10/31 – 16:51
Residuals 2019/11/03 – 20:26
Some thoughts on model selection 2019/11/03 – 20:36
Generalized Linear Models 2019/11/03 – 20:40
Binary Data GLMs 2019/11/03 – 20:48
Poisson Regression 2019/11/03 – 21:03
Fitting Functions 2019/11/04 – 10:17
Churn Analysis with Tree Based Models in Python 2019/11/07 – 19:25
Interview Questions 2019/12/05 – 18:37
Feature Engineering 2020/01/15 – 10:54