H5P – Create and Share Rich HTML5 Content and Applications
Enter your keywords
Menu
Main menu
Examples & downloads
Documentation
Goals & roadmap
Forum
Log in
Create free account
You are here
Home
»
toobamukhtar
»
Contents
» Contents
Contents
Primary tabs
View
Contents
(active tab)
Comments
toobamukhtar
Member for
5 years 2 weeks
Contact User
Create New Content
Title
Updated
Link to edit content
Data Exploration Visualization and Feature Engineering
2019/09/24 – 10:21
Ensemble_Methods__Random_Forests_and_Boosting
2019/09/25 – 13:43
‘Resume Evaluation Using Text Analytics Algorithms
2019/09/25 – 21:01
Online Experimentation and A/B Testing
2019/09/26 – 11:20
Unsupervised Learning with K-means Clustering
2019/09/26 – 11:35
Regression
2019/09/26 – 12:55
Text Analytics Fundamentals
2019/09/27 – 12:58
Big Data Engineering with Distributed Systems
2019/09/27 – 13:43
Time Series Forecasting
2019/09/28 – 13:43
Real Time Analytics
2019/09/28 – 14:06
Naive Bayes
2019/09/28 – 14:09
Recommender_Systems
2019/09/28 – 14:18
Resume Analyzer with Text Analytics
2019/09/28 – 14:24
Predictive Analytics, Classification, and Decision Trees
2019/09/28 – 14:26
Evaluation Of Classification Models
2019/09/28 – 14:26
Interactive Dashboards with R
2019/10/22 – 16:13
Interactive Dashboards with R
2019/10/24 – 14:29
The Central Limit Theorem (CLT)
2019/10/24 – 15:27
Probability Models and Axioms
2019/10/24 – 15:34
Conditioning and Bayes' Rule
2019/10/24 – 15:36
Slides are appearing in Shrinked form on wordpress
2019/10/25 – 15:50
Independence
2019/10/28 – 19:39
Counting
2019/10/28 – 19:41
Discrete Random Variables Part I
2019/10/28 – 19:43
Discrete Random Variables Part II
2019/10/28 – 19:45
Discrete Random Variables Part III
2019/10/28 – 19:46
Derived Distributions
2019/10/28 – 19:49
Continuous Random Variables Part I
2019/10/28 – 19:51
Continuous Random Variables Part II
2019/10/28 – 19:52
Continuous Random Variables Part III
2019/10/28 – 19:54
Sum of Independent R.V.s. Covariance and Correlation
2019/10/28 – 19:56
Conditional Expectation & Variance Revisited; Sum of a Random Number of Independent R.V.s
2019/10/28 – 19:57
Introduction to Bayesian Inference
2019/10/28 – 19:58
Linear Models With Normal Noise
2019/10/28 – 20:00
Least Mean Squares (LMS) Estimation
2019/10/28 – 20:01
Linear Least Mean Squares (LLMS) Estimation
2019/10/28 – 20:02
Inequalities, Convergence, and the Weak Law of Large Numbers
2019/10/28 – 20:03
The Central Limit Theorem (CLT)
2019/10/28 – 20:06
An Introduction to Classical Statistics
2019/10/28 – 20:07
The Bernoulli Process
2019/10/28 – 20:09
The Poisson Process Part I
2019/10/28 – 20:10
The Poisson Process Part II
2019/10/28 – 20:13
Finite-State Markov Chains
2019/10/28 – 20:14
Steady–State Behavior of Markov Chains
2019/10/28 – 20:15
Absorption Probabilities and Expected Time to Absorption
2019/10/28 – 20:16
Hypothesis Testing
2019/10/29 – 09:49
Introduction to Regression
2019/10/30 – 12:21
Basic Notation and Background
2019/10/30 – 12:25
Linear Least Squares
2019/10/30 – 12:41
Regression to the Mean
2019/10/30 – 12:46
Statistical Linear Regression Models
2019/10/30 – 12:59
Residuals
2019/10/31 – 14:38
Inference in Regression
2019/10/31 – 14:50
Multivariate Regression
2019/10/31 – 15:09
Multivariable Regression Example
2019/10/31 – 16:33
Multivariable Simulation Exercises
2019/10/31 – 16:51
Residuals
2019/11/03 – 20:26
Some thoughts on model selection
2019/11/03 – 20:36
Generalized Linear Models
2019/11/03 – 20:40
Binary Data GLMs
2019/11/03 – 20:48
Poisson Regression
2019/11/03 – 21:03
Fitting Functions
2019/11/04 – 10:17
Churn Analysis with Tree Based Models in Python
2019/11/07 – 19:25
Interview Questions
2019/12/05 – 18:37
Feature Engineering
2020/01/15 – 10:54