H5P – Create and Share Rich HTML5 Content and Applications
Enter your keywords
Menu
Main menu
Examples & downloads
Documentation
Goals & roadmap
Forum
Log in
Create free account
You are here
Home
»
toobamukhtar
»
Contents
» Contents
Contents
Primary tabs
View
Contents
(active tab)
Comments
toobamukhtar
Member for
5 years 2 months
Contact User
Create New Content
Title
Updated
Link to edit content
Absorption Probabilities and Expected Time to Absorption
2019/10/28 – 20:16
An Introduction to Classical Statistics
2019/10/28 – 20:07
Basic Notation and Background
2019/10/30 – 12:25
Big Data Engineering with Distributed Systems
2019/09/27 – 13:43
Binary Data GLMs
2019/11/03 – 20:48
Churn Analysis with Tree Based Models in Python
2019/11/07 – 19:25
Conditional Expectation & Variance Revisited; Sum of a Random Number of Independent R.V.s
2019/10/28 – 19:57
Conditioning and Bayes' Rule
2019/10/24 – 15:36
Continuous Random Variables Part I
2019/10/28 – 19:51
Continuous Random Variables Part II
2019/10/28 – 19:52
Continuous Random Variables Part III
2019/10/28 – 19:54
Counting
2019/10/28 – 19:41
Data Exploration Visualization and Feature Engineering
2019/09/24 – 10:21
Derived Distributions
2019/10/28 – 19:49
Discrete Random Variables Part I
2019/10/28 – 19:43
Discrete Random Variables Part II
2019/10/28 – 19:45
Discrete Random Variables Part III
2019/10/28 – 19:46
Ensemble_Methods__Random_Forests_and_Boosting
2019/09/25 – 13:43
Evaluation Of Classification Models
2019/09/28 – 14:26
Feature Engineering
2020/01/15 – 10:54
Finite-State Markov Chains
2019/10/28 – 20:14
Fitting Functions
2019/11/04 – 10:17
Generalized Linear Models
2019/11/03 – 20:40
Hypothesis Testing
2019/10/29 – 09:49
Independence
2019/10/28 – 19:39
Inequalities, Convergence, and the Weak Law of Large Numbers
2019/10/28 – 20:03
Inference in Regression
2019/10/31 – 14:50
Interactive Dashboards with R
2019/10/22 – 16:13
Interactive Dashboards with R
2019/10/24 – 14:29
Interview Questions
2019/12/05 – 18:37
Introduction to Bayesian Inference
2019/10/28 – 19:58
Introduction to Regression
2019/10/30 – 12:21
Least Mean Squares (LMS) Estimation
2019/10/28 – 20:01
Linear Least Mean Squares (LLMS) Estimation
2019/10/28 – 20:02
Linear Least Squares
2019/10/30 – 12:41
Linear Models With Normal Noise
2019/10/28 – 20:00
Multivariable Regression Example
2019/10/31 – 16:33
Multivariable Simulation Exercises
2019/10/31 – 16:51
Multivariate Regression
2019/10/31 – 15:09
Naive Bayes
2019/09/28 – 14:09
Online Experimentation and A/B Testing
2019/09/26 – 11:20
Poisson Regression
2019/11/03 – 21:03
Predictive Analytics, Classification, and Decision Trees
2019/09/28 – 14:26
Probability Models and Axioms
2019/10/24 – 15:34
Real Time Analytics
2019/09/28 – 14:06
Recommender_Systems
2019/09/28 – 14:18
Regression
2019/09/26 – 12:55
Regression to the Mean
2019/10/30 – 12:46
Residuals
2019/11/03 – 20:26
Residuals
2019/10/31 – 14:38
Resume Analyzer with Text Analytics
2019/09/28 – 14:24
Slides are appearing in Shrinked form on wordpress
2019/10/25 – 15:50
Some thoughts on model selection
2019/11/03 – 20:36
Statistical Linear Regression Models
2019/10/30 – 12:59
Steady–State Behavior of Markov Chains
2019/10/28 – 20:15
Sum of Independent R.V.s. Covariance and Correlation
2019/10/28 – 19:56
Text Analytics Fundamentals
2019/09/27 – 12:58
The Bernoulli Process
2019/10/28 – 20:09
The Central Limit Theorem (CLT)
2019/10/24 – 15:27
The Central Limit Theorem (CLT)
2019/10/28 – 20:06
The Poisson Process Part I
2019/10/28 – 20:10
The Poisson Process Part II
2019/10/28 – 20:13
Time Series Forecasting
2019/09/28 – 13:43
Unsupervised Learning with K-means Clustering
2019/09/26 – 11:35
‘Resume Evaluation Using Text Analytics Algorithms
2019/09/25 – 21:01